A Study of Convolution Tree Kernel with Local Alignment
نویسندگان
چکیده
This paper discusses a new convolution tree kernel by introducing local alignments. The main idea of the new kernel is to allow some syntactic alternations during each match between subtrees. In this paper, we give an algorithm to calculate the composite kernel. The experiment results show promising improvements on two tasks: semantic role labeling and question classification.
منابع مشابه
Convolution Kernel over Packed Parse Forest
This paper proposes a convolution forest kernel to effectively explore rich structured features embedded in a packed parse forest. As opposed to the convolution tree kernel, the proposed forest kernel does not have to commit to a single best parse tree, is thus able to explore very large object spaces and much more structured features embedded in a forest. This makes the proposed kernel more ro...
متن کاملA Graph Kernel Based on the Jensen-Shannon Representation Alignment
In this paper, we develop a novel graph kernel by aligning the Jensen-Shannon (JS) representations of vertices. We commence by describing how to compute the JS representation of a vertex by measuring the JS divergence (JSD) between the corresponding h-layer depth-based (DB) representations developed in [Bai et al., 2014a]). By aligning JS representations of vertices, we identify the corresponde...
متن کاملExploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
This paper proposes to use a convolution kernel over parse trees to model syntactic structure information for relation extraction. Our study reveals that the syntactic structure features embedded in a parse tree are very effective for relation extraction and these features can be well captured by the convolution tree kernel. Evaluation on the ACE 2003 corpus shows that the convolution kernel ov...
متن کاملExploring syntactic structured features over parse trees for relation extraction using kernel methods
Extracting semantic relationships between entities from text documents is challenging in information extraction and important for deep information processing and management. This paper proposes to use the convolution kernel over parse trees together with support vector machines to model syntactic structured information for relation extraction. Compared with linear kernels, tree kernels can effe...
متن کاملA Hybrid Convolution Tree Kernel for Semantic Role Labeling
A hybrid convolution tree kernel is proposed in this paper to effectively model syntactic structures for semantic role labeling (SRL). The hybrid kernel consists of two individual convolution kernels: a Path kernel, which captures predicateargument link features, and a Constituent Structure kernel, which captures the syntactic structure features of arguments. Evaluation on the datasets of CoNLL...
متن کامل